. 115 Downloads. Abstract The flow rate characteristics passing through an averaging Pitot tube (APT) while constantly controlling the flow temperature were studied through experiments and CFD simulations. At controlled temperatures of 25, 50, 75, and 100°C, the flow characteristics, in this case the upstream, downstream and static pressure at the APT flow meter probe, were measured as the flow rate was increased. The flow rate through the APT flow meter was represented using the H-parameter (hydraulic height) obtained by a combination of the differential pressure and the air density measured at the APT flow meter probe. Four types of H-parameters were defined depending on the specific combination. The flow rate and the upstream, downstream and static pressures measured at the APT flow meter while changing the H-parameters were simulated by means of CFD.
EMCO Averaging Pitot Tube Type PITOBAR EMCO Averaging Pitot Tube type PITOBAR PITOBAR averaging pitot tubes are used for flow measurement of liquids, gasses and steam in circular or rectangular pipes or ducts in accordance to the principles of differential pressure and Bernouilli's law. Abstract: The objective of this research is to optimize the cross-sectional shape of an Averaging Pitot Tube (APT) flow sensor with Flow Conditioning Wing (FCW). The flat cutting and circle cutting wingtip shapes were researched through Computational Fluid Dynamics (CFD) simulation and air flow experimental tests for two.
The flow rate curves showed different features depending on which type of H-parameter was used. When using the constant air density value in a standard state to calculate the H-parameters, the flow rate increased linearly with the H-parameter and the slope of the flow rate curve according to the H-parameter increased as the controlled target air temperature was increased.
When using different air density levels corresponding to each target air temperature to calculate the H-parameter, the slope of the flow rate curve according to the H-parameter was constant and the flow rate curve could be represented by a single line. The CFD simulation results were in good agreement with the experimental results. The CFD simulations were performed while increasing the air temperature to 1200 K. The CFD simulation results for high air temperatures were similar to those at the low temperature ranging from 25 to 100°C.
Averaging Pitot Tube Pdf Download For Pc
Recommended by Associate Editor Seogwon Kang Seung Hwa Yeo received his B.S. Degree in Automotive Engineering from Seoil University, Korea, in 2011. He then took his M.S. Degree in Automotive Engineering from Seoul Nat’l University of Science and Technology, Korea, in 2013. He is interested in the field of internal combustion engine, especially in aftertreatment systems of emission. Su Ryong Lee received his B.S., M.S., and Ph.D.
Averaging Pitot Tube Pdf Download For Windows 7
Degrees in Mechanical Engineering from Seoul National University, Korea, in 1985, 1987 and 1991, respectively. He worked at Hyundai Motor Company as a senior researcher from 1993 to 1996. He is currently a professor in the Department of Mechanical & Automotive Engineering at Seoul Nat’l University of Science and Technology. His research interests are in the fields of combustion and internal combustion engine. Choong Hoon Lee received his B.S. (1987), and Ph.D.
Degrees (1996) in Mechanical Engineering from Seoul National University. He worked as a diesel engine development engineer for Daewoo Heavy Industry for six years. He was a visiting research fellow at the Engine Research Center at the University of Wisconsin-Madison in 1997. He has worked in the Department of Mechanical and Automotive Engineering at Seoul National University of Science and Technology as a professor since 2000. His research interests are the measurement and control of sprays and flows and HILS for predicting automotive performance.